École des profs Collège Ahuntsic

1-2 juin 2015
Le Cerveau à tous les niveaux

Principes fondamentaux
- Du simple au complexe
 - Anatomie des niveaux d'organisation
 - Fonction des niveaux d'organisation
- Le bricolage de l'évolution
 - Notre héritage évolutif
- Le développement de nos facultés
 - De l'embryon à la morale
- Le plaisir et la douleur
 - La quête du plaisir
 - Les paradis artificiels
 - L'évitement de la douleur
- Les détecteurs sensoriels
 - La vision
- Le corps en mouvement
 - Produire un mouvement volontaire

Fonctions complexes
- Au cœur de la mémoire
 - Les traces de l'apprentissage
 - Oubli et amnésie
- Que d'émotions
 - Peur, anxiété et angoisse
- De la pensée au langage
 - Communiquer avec des mots
- Dormir, rêver...
 - Le cycle veille - sommeil - rêve
 - Nos horloges biologiques
- L'émergence de la conscience
 - Le sentiment d'être soi

Dysfonctions
- Les troubles de l'esprit
 - Dépression et manie
 - Les troubles anxieux
 - La démence de type Alzheimer

Le Blogue du Cerveau à tous les niveaux

Lundi, 13 février 2012

Des protéines qui guident le câblage cérébral

Le cerveau humain contient des millions de fois plus de connexions entre ses neurones que les quelque 20 000 ou 25 000 gènes contenus dans l'ADN de nos cellules. Et pourtant durant le développement de notre cerveau, les extrémités des axones de nos neurones en développement ressemblent à de véritables « têtes chercheuses » qui réussissent à trouver leur cible spécifique à travers la soupes moléculaire complexe que constitue le milieu extracellulaire.
LES CENTRES DU PLAISIR

Pour qu'une espèce survive, ses individus doivent en premier lieu assurer leurs fonctions vitales comme se nourrir, réagir à l'agression et se reproduire. L'évolution a donc mis en place dans notre cerveau des régions dont le rôle est de "récompenser" l'exécution de ces fonctions vitales par une sensation agréable.

Ce sont ces régions, interconnectées entre elles, qui forment ce que l'on appelle le circuit de la récompense.

L'aire tegmentale ventrale (ATV), un groupe de neurones situés en plein centre du cerveau, est particulièrement importante dans ce circuit. Elle reçoit de l'information de plusieurs autres régions qui l'informent du niveau de satisfaction des besoins fondamentaux ou plus spécifiquement humains.
3 niveaux d’explication

Débutant

Intermédiaire

Avancé
LES CENTRES DU PLAISIR

Pour qu'une espèce survive, ses individus doivent en premier lieu assurer leurs fonctions vitales comme se nourrir, réagir à l'agression et se reproduire. L'évolution a donc mis en place dans notre cerveau des régions dont le rôle est de "récompenser" l'exécution de ces fonctions vitales par une sensation agréable.

Ce sont ces régions, interconnectées entre elles, qui forment ce que l'on appelle le circuit de la récompense.

L'aire tegmentale ventrale (ATV), un groupe de neurones situés en plein centre du cerveau, est particulièrement importante dans ce circuit. Elle reçoit de l'information de plusieurs autres régions qui l'informent du niveau de satisfaction des besoins fondamentaux ou plus spécifiquement humains.
5 niveaux d’organisation

- Social
- Psychologique
- Cérébral
- Cellulaire
- Moléculaire
Éloge de la suite
autour d'Henri Laborit
et d'autres parcours qui l'ont croisé

POURQUOI CE FILM?
SYNOPSIS
PERSONNAGES
RANDE
ANNONCE

LA SUITE... (INFLUENCES DEPUIS SON DÉCÈS EN 1995, ET PROJETS EN COURS)

POURQUOI CE SITE ?
BIOGRAPHIES
LIVRES
ARTICLES
AUDIO
VIDÉO
PHOTOS
CITATIONS
CONTACT

NON CLASSE.

Ce site est en cours de construction et n'est pas prêt à être consulté ! Revenez nous voir le 21 novembre 2014...

Publié le 30 août 2014 - Laisser un commentaire

DERNIERS ARTICLES

Comme l'eau qui jaillit

Comme l'eau qui jaillit

Publié le 16 novembre 2014 - Laisser un commentaire

« Depuis ma tendre enfance, je m'arrête toujours devant un jet d'eau, parce que pour

Dernière phrase du film Mon œuf d'Amérique (1990)

En ligne depuis le 21 novembre 2014,
date à laquelle Laborit aurait eu 100 ans !
Les centres du plaisir

Pour qu'une espèce survive, ses individus doivent en premier lieu assurer leurs besoins nutritifs. Cependant, bien d'autres facteurs entrent en jeu. Les animaux doivent également se reproduire et maintenir leur équilibre.

Ces buts ont un impact sur les comportements des animaux. Sorcières et sorciers, que savons-nous des humains ?
ÇA FAIT 10 ANS QU’ON S’CREUSE LES MÉNINGES

Le vendredi 22 novembre 2013 | De 10 h à 20 h
Programme complet : isc.uqam.ca

PERCEPTION ET ACTION
www.upopmontreal.com

La Mort se raconte

Révolution féministe
De la chambre à coucher, à l'économie de marché

Plein gaz sur le schiste

Introduction à l'écologie sonore

L'éthique dans l'assiette

Les trois infinis : le petit, le grand et le complexe
Les séances, présentées par Bruno Dubuc, ont lieu au bar Les Pas Sages, 951 rue Rachel Est, les lundis suivants à 19 h :

- 11 mai : L'infiniment complexe : le labyrinthe de nos réseaux cérébraux
Tous les détails au www.upopmontreal.com
Donc je ne suis pas prof ni chercheur…
...juste un type qui essaie de comprendre son cerveau et celui des autres...
…et qui adore en discuter pour voir ce qu’ils en ont compris de leur côté !
Un casse-tête, à deux niveaux :

1) je ne peux que donner un aperçu très partiel, en mettant ensemble quelques morceaux ;

2) définir un ordre, dans la présentation partielle de certains assemblages de morceaux, n’est pas facile car on n’a que la linéarité du langage pour appréhender des réseaux et une causalité circulaire à tous les niveaux, mais sans hyperliens !
Séance 1 : Croissance de la complexité : du Big Bang aux sociétés humaines
Séance 2 : Ancienne et nouvelle « grammaire » de la communication neuronale
[dîner]
Séance 3 : Nos mémoires
Séance 4 : Cartographier notre connectome

École des profs CollègeAhuntsic

Lundi 1er juin

Séance 5 : Des réseaux qui oscillent à l’échelle du cerveau
Séance 6 : Les « fonctions supérieures »
[dîner]
Séance 7 : Le corps-cerveau-environnement
Séance 8 : Vers une « neuropédagogie » ?
Lundi 1er juin

Séance 1 : Croissance de la complexité : du Big Bang aux sociétés humaines

Un peu de thermodynamique;
 La matière et la forme;
 Atomes;
 Étoiles;
 Planètes;
 Molécules;
 Origine de la vie;
 Autopoïèse;
 Procaryotes;
 Eucaryotes;
 Génomes;
 Multicellulaires;
 Systèmes nerveux;
 Hominisation;
 Cerveaux humains;
Sociétés humaines.
Je vais commencer par une citation d’Henri Laborit qui est en fait l’une des dernières diapos que je vais vous montrer demain après-midi durant la dernière séance….

…histoire de mettre en pratique dès maintenant ce que je vais vous proposer à la fin !
« Chaque heure passée par un enfant sur un banc d’école devrait commencer par définir la **structure** de ce qui va être dit dans les **structures d’ensemble**.

Chaque chose apprise doit se mettre en place dans un cadre plus vaste, par niveaux d’organisation et régulation intermédiaires, aussi bien dans le sens horizontal du présent, que vertical du passé et de l’avenir. »
Voilà la *structure* dont nous allons parler. Probablement l’objet le plus complexe de l’univers connu dont on a tous un exemplaire entre les deux oreilles !
Mais c’est pas juste le cerveau qui est complexe, c’est toute la vie avant lui qui a permis son émergence et toutes les sociétés humaines après qui se sont constituées grâce à lui !
« L’histoire de l’Univers, c’est comment ces quarks et ces électrons sont devenus vous-mêmes.

Quand vous prenez conscience de votre existence, vous faites l’acte le plus extraordinairement complexe qui n’ait jamais été fait dans l’Univers et cela exige que 100 milliards de milliards de milliards de quarks et d’électrons jouent un rôle précis pour que vous soyez en mesure de penser ».

Plus de 13,7 milliards d’années d’organisation et de complexification depuis le Big Bang ont été nécessaires pour concrétiser ce simple fait. »

- Hubert Reeves
Évolution cosmique

Évolution chimique

Évolution biologique

Croissance de complexité

(ce qui ne veut pas dire que l’humain en soit la finalité !)

100 000 000 000 000 000 000 000 000 000

(Crédit : Robert Lamontagne)
Qu’est-ce qui rend possible la croissance de la complexité ?
Les systèmes vivants peuvent créer de l'ordre localement…

…parce que le désordre (ou entropie) croît à l'échelle de l'univers.

Dans un système isolé comme l'univers, l'énergie se conserve (1er principe de la thermodynamique)

Et…
l’énergie se dissipe, se dégrade, sous forme de chaleur (entropie croissante)

(2ᵉ principe de la thermodynamique)
Il peut donc y avoir croissance de complexité localement…

…parce qu’il continue d’y avoir croissance du désordre à l’échelle de l’univers.

Et cette complexité va pouvoir croître dans ce qu’on appelle des systèmes ouverts, c’est-à-dire qui peuvent échanger de la matière et de l’énergie avec le milieu extérieur.
Pourquoi la croissance de la complexité et pas la stabilité ?

Comme l'atome de Fer a le noyau le plus stable, l'univers devrait être composé uniquement d'atomes de fer ; or, aujourd'hui, moins d'un atome sur trente mille est un atome de fer. Pourquoi?
Comme l'atome de Fer a le noyau le plus stable, l'univers devrait être composé uniquement d'atomes de fer ; or, aujourd'hui, moins d'un atome sur trente mille est un atome de fer. Pourquoi?

Essentiellement parce que *l'expansion a été trop rapide* pour que la stabilité nucléaire soit atteinte. Pour les structures moléculaires qui s'organisent, la quête de la stabilité est un guide très peu directif car elles ont accès à *une multitude d'états de même stabilité.* (Hubert Reeves, *Patience dans l’azur*)
Et c’est cela qui va ouvrir tant de possibilités en terme de diversité de formes…
Durant l’histoire occidentale de la science et de la philosophie, il y a eu une tension entre 2 perspectives :

- l’étude de la matière : de quoi c’est fait ?
- l’étude de la forme : quel est le pattern ?
- l'étude de la matière : de quoi c'est fait ?

L'atome est constitué d'un noyau concentrant plus de 99,9 % de sa masse autour duquel se distribuent des électrons pour former un nuage 100 000 fois plus étendu que le noyau lui-même (donc schéma pas à l'échelle ici !).
Combustion de l'hélium

- l'étude de la matière : de quoi c'est fait ?
Combustion de l'hélium

- l'étude de la matière : de quoi c'est fait ?

Elles s'éclatent pour vous!
Sans les étoiles mortes, vous ne seriez pas là.

Le calcium de vos os, l’oxygène que vous respirez et le fer dans votre sang ont tous été formés dans des étoiles disparues depuis des milliards d’années.

craq-astro.ca
CoolCosmos.net
<table>
<thead>
<tr>
<th>Élément</th>
<th>Numéro atomique</th>
<th>Symbole</th>
<th>Nom</th>
<th>Masse atomique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogène</td>
<td>1</td>
<td>H</td>
<td>Hydrogène</td>
<td>1.00794</td>
</tr>
<tr>
<td>Lithium</td>
<td>3</td>
<td>Li</td>
<td>Lithium</td>
<td>6.941</td>
</tr>
<tr>
<td>Béryllium</td>
<td>4</td>
<td>Be</td>
<td>Béryllium</td>
<td>9.0122</td>
</tr>
<tr>
<td>Bore</td>
<td>5</td>
<td>B</td>
<td>Bore</td>
<td>10.8108</td>
</tr>
<tr>
<td>Cézium</td>
<td>6</td>
<td>C</td>
<td>Cézium</td>
<td>12.0107</td>
</tr>
<tr>
<td>Magnésium</td>
<td>12</td>
<td>Mg</td>
<td>Magnésium</td>
<td>24.3050</td>
</tr>
<tr>
<td>Calcium</td>
<td>13</td>
<td>Ca</td>
<td>Calcium</td>
<td>40.078</td>
</tr>
<tr>
<td>Scandium</td>
<td>21</td>
<td>Sc</td>
<td>Scandium</td>
<td>44.95591</td>
</tr>
<tr>
<td>Titan</td>
<td>22</td>
<td>Ti</td>
<td>Titan</td>
<td>47.867</td>
</tr>
<tr>
<td>Vénénèse</td>
<td>23</td>
<td>V</td>
<td>Vénénèse</td>
<td>50.9415</td>
</tr>
<tr>
<td>Chrom</td>
<td>24</td>
<td>Cr</td>
<td>Chrom</td>
<td>52.005</td>
</tr>
<tr>
<td>Manganèse</td>
<td>25</td>
<td>Mn</td>
<td>Manganèse</td>
<td>54.93802</td>
</tr>
<tr>
<td>Fer</td>
<td>26</td>
<td>Fe</td>
<td>Fer</td>
<td>55.8471</td>
</tr>
<tr>
<td>Cobalt</td>
<td>27</td>
<td>Co</td>
<td>Cobalt</td>
<td>58.93322</td>
</tr>
<tr>
<td>Nickel</td>
<td>28</td>
<td>Ni</td>
<td>Nickel</td>
<td>58.6934</td>
</tr>
<tr>
<td>Cuivre</td>
<td>29</td>
<td>Cu</td>
<td>Cuivre</td>
<td>63.546</td>
</tr>
<tr>
<td>Zinco</td>
<td>30</td>
<td>Zn</td>
<td>Zinco</td>
<td>65.39</td>
</tr>
<tr>
<td>Général</td>
<td>32</td>
<td>Ga</td>
<td>Général</td>
<td>69.723</td>
</tr>
<tr>
<td>Silicium</td>
<td>14</td>
<td>Si</td>
<td>Silicium</td>
<td>28.085</td>
</tr>
<tr>
<td>Phosphore</td>
<td>15</td>
<td>P</td>
<td>Phosphore</td>
<td>30.97376</td>
</tr>
<tr>
<td>Sélénium</td>
<td>16</td>
<td>Se</td>
<td>Sélénium</td>
<td>78.96</td>
</tr>
<tr>
<td>Sulfure</td>
<td>17</td>
<td>S</td>
<td>Sulfure</td>
<td>32.066</td>
</tr>
<tr>
<td>Chlorure</td>
<td>17</td>
<td>Cl</td>
<td>Chlorure</td>
<td>35.453</td>
</tr>
<tr>
<td>Argon</td>
<td>18</td>
<td>Ar</td>
<td>Argon</td>
<td>39.948</td>
</tr>
<tr>
<td>Kérygene</td>
<td>19</td>
<td>K</td>
<td>Kérygene</td>
<td>39.0983</td>
</tr>
<tr>
<td>Calcium</td>
<td>20</td>
<td>Ca</td>
<td>Calcium</td>
<td>40.078</td>
</tr>
<tr>
<td>Scandium</td>
<td>21</td>
<td>Sc</td>
<td>Scandium</td>
<td>44.95591</td>
</tr>
<tr>
<td>Titan</td>
<td>22</td>
<td>Ti</td>
<td>Titan</td>
<td>47.867</td>
</tr>
<tr>
<td>Vénénèse</td>
<td>23</td>
<td>V</td>
<td>Vénénèse</td>
<td>50.9415</td>
</tr>
<tr>
<td>Chrom</td>
<td>24</td>
<td>Cr</td>
<td>Chrom</td>
<td>52.005</td>
</tr>
<tr>
<td>Manganèse</td>
<td>25</td>
<td>Mn</td>
<td>Manganèse</td>
<td>54.93802</td>
</tr>
<tr>
<td>Fer</td>
<td>26</td>
<td>Fe</td>
<td>Fer</td>
<td>55.8471</td>
</tr>
<tr>
<td>Cobalt</td>
<td>27</td>
<td>Co</td>
<td>Cobalt</td>
<td>58.93322</td>
</tr>
<tr>
<td>Nickel</td>
<td>28</td>
<td>Ni</td>
<td>Nickel</td>
<td>58.6934</td>
</tr>
<tr>
<td>Cuivre</td>
<td>29</td>
<td>Cu</td>
<td>Cuivre</td>
<td>63.546</td>
</tr>
<tr>
<td>Zinco</td>
<td>30</td>
<td>Zn</td>
<td>Zinco</td>
<td>65.39</td>
</tr>
<tr>
<td>Général</td>
<td>32</td>
<td>Ga</td>
<td>Général</td>
<td>69.723</td>
</tr>
<tr>
<td>Silicium</td>
<td>14</td>
<td>Si</td>
<td>Silicium</td>
<td>28.085</td>
</tr>
<tr>
<td>Phosphore</td>
<td>15</td>
<td>P</td>
<td>Phosphore</td>
<td>30.97376</td>
</tr>
<tr>
<td>Sélénium</td>
<td>16</td>
<td>Se</td>
<td>Sélénium</td>
<td>78.96</td>
</tr>
<tr>
<td>Sulfure</td>
<td>17</td>
<td>S</td>
<td>Sulfure</td>
<td>32.066</td>
</tr>
<tr>
<td>Chlorure</td>
<td>17</td>
<td>Cl</td>
<td>Chlorure</td>
<td>35.453</td>
</tr>
<tr>
<td>Argon</td>
<td>18</td>
<td>Ar</td>
<td>Argon</td>
<td>39.948</td>
</tr>
<tr>
<td>Kérygene</td>
<td>19</td>
<td>K</td>
<td>Kérygene</td>
<td>39.0983</td>
</tr>
</tbody>
</table>

Remarque: Les masses atomiques rentrées dans des parenthèses sont celles des isotopes les plus stables ou les plus communs.
Pour essayer de comprendre sa place dans l’univers, les 3 infinis (le petit, le grand et le complexe), sont donc indissociables.
Pour essayer de comprendre sa place dans l’univers, les 3 infinis (le petit, le grand et le complexe), sont donc indissociables.
Infiniment grand

Infiniment petit

«REND POSSIBLE»

Infiniment complexe

« REND POSSIBLE »
La matière expulsée par l’explosion des **supernovas** va former une **nébuleuse solaire** : nuage en rotation de **poussières**, de **roches** et de **gaz** à partir duquel notre système solaire se serait formé.

Des **protoplanètes** commencent à se former tout autour du futur Soleil…

Une vue d'artiste du disque protoplanétaire.

…grâce à des fragments de plus en plus gros qui entrent en collision les uns avec les autres.

Ceux-ci incluent un groupement situé approximativement à 150 millions de kilomètres du centre : la Terre.
Plusieurs années plus tard, une collision importante avec un astéroïde de la taille d'une planète mélangea les couches externes des deux planètes.

Cela provoqua l'agrandissement de la Terre et le reste des débris forma la Lune qui demeura captive en orbite autour de la Terre.
Le nombre estimé de planètes "habitable" dans notre galaxie devient vertigineux

Par Erwan Lecomte
Publié le 6 février 2015

Dans une nouvelle publication basée sur les dernières données récoltées par le télescope Kepler, des chercheurs estiment qu'elles se compteraient en "centaines de milliards". C'est bien plus que les dernières estimations.
Être dans la zone habitable : nécessaire mais pas suffisant

Pour que la vie puisse apparaître, il faut que de nombreux autres facteurs soient présents.

ATMOSPHERE : il faut que la planète ait une taille suffisant pour pouvoir retenir une atmosphère protectrice.

Aussi, si son atmosphère est riche en CO2, un effet de serre va alors augmenter la température à sa surface de plusieurs degrés.
CHAMP MAGNÉTIQUE : un champ magnétique est favorable car il agit autour de la Terre comme un bouclier qui dévie les particules chargées émises par le soleil.

Pour nous, c’est le noyau liquide fait de fer et de nickel au centre de la Terre, dont la rotation provoque l'apparition de notre champ magnétique.

STABILISATEUR. Ultime élément, moins indispensable celui-là : la présence d’une lune autour d’une planète pourrait favoriser l'apparition de la vie.

Agissant à la manière d'un gyroscope, la Lune contribue à stabiliser la Terre sur son axe.

En l'absence de cette stabilisation, on pourrait observer des variations bien plus importantes et erratiques des paramètres physico-chimiques de l'environnement. Ce qui, on suppose, pourrait compliquer le développement de la vie…

Molécule :

Les molécules constituent des **agrégats atomiques** liés par des liaisons dites « covalentes » d'au moins deux atomes, différents ou non.

L'assemblage d'atomes constituant une molécule **n'est pas définitif.** Il est susceptible de subir des modifications, c'est-à-dire de se transformer en une ou plusieurs autres molécules ; une telle transformation est appelée **réaction chimique.**
L’atmosphère primitive de notre planète aurait été constituée d’un mélange « inhospitalier » des molécules simples suivantes :

- méthane (CH₄),
- ammoniac (NH₃),
- de vapeur d’eau (H₂O),
- de dioxyde de carbone (CO₂) et de sulfure d’hydrogène (H₂S).
Ces molécules simples ont pu se complexifier jusqu'à un certain point dans les « mares chaudes » dont parlait déjà Darwin et qu'on a ensuite appelé « soupe primitive ».

1953, Miller et Urey : confirment cette hypothèse par une célèbre expérience in vitro où des molécules organiques apparaissent (acides aminés, etc.)
En présence du puissant rayonnement solaire (rayons UV...), ce mélange de gaz aurait donc pu donner naissance à plusieurs molécules un peu plus complexes telles que les acides aminés (qui formeront plus tard les protéines).
CONFÉRENCE - AMPHITHEÂTRE
19 mars 2015 - 19h00

DU CHIMIQUE AU BIOLOGIQUE

AINSI VINT LA VIE!

Une conférence de Christophe Malaterre

De la formation de la Terre, il y a environ 4,5 milliards d'années, à l'apparition de la vie, il y a de cela 3,5 à 3,8 milliards d'années, que s'est-il passé?

Christophe Malaterre est professeur de philosophie des sciences à l’UQAM et auteur de nombreux ouvrages.
Comment passe-t-on de molécules organiques simples (acides aminés, etc.)…

…à des chaînes de molécules…

…puis ensuite à des petits ARN…

…puis encore plus tard à de longues chaînes informationnelles comme l’ADN ?
La notion d'évolution chimique occupe actuellement une place centrale dans le débat scientifique sur les origines de la vie.

Certains chercheurs transposent dans le monde chimique le concept darwinien de sélection naturelle.

(1- variations;
2- avantage de certaines variantes dans certains milieux en terme de survie et de reproduction;
3- transmission accrue (différentielle) de cette variante.)
La notion d'évolution chimique occupe actuellement une place centrale dans le débat scientifique sur les origines de la vie.

Certains chercheurs transposent dans le monde chimique le concept darwinien de sélection naturelle.

Et pensent que des ARN autocatalytiques peuvent donner lieu à de la variation / sélection.
1980 : Thomas Cech et Sydney Altman découvrent que certains ARN (les ribozymes) peuvent avoir une fonction catalytique, exactement comme les protéines.

Donc on peut imaginer des ARN capables de s’auto-catalyser (pour se reproduire) en plus d’être des polymères informationnels.
1980 : Thomas Cech et Sydney Altman découvrent que certains ARN (les ribozymes) peuvent avoir une fonction catalytique, exactement comme les protéines.

Donc on peut imaginer des ARN capables de s’auto-catalyser (pour se reproduire) en plus d’être des polymères informationnels.

L'ARN (apparue probablement avant l'ADN) aurait ainsi pu jouer à la fois le rôle de l'ADN et celui des protéines (enzymes), brisant ainsi le cercle vicieux de « l'œuf ou de la poule »…
D'autres considèrent que l'évolution chimique renvoie à des processus évolutifs différents, **la sélection naturelle n’étant pas le seul moteur ou mécanisme de l’évolution.**

- La dérive génétique aléatoire (« genetic drift »)

- Le bricolage (réutilisation fortuite) (« tinkering », « kluge »)

Et donc certains conçoivent **l’évolution chimique** « en écho » à ces autres mécanismes de l’évolution,

i.e. comme ayant pu bénéficier de certaines formes de dérive et de bricolage moléculaire.
Quoi qu’ait pu être ses mécanismes, cette évolution chimique va donner lieu à des chaînes moléculaires de :

- Glucides

![Glucose and Amylose](image1)

- Lipides

![Triglyceride and Phospholipid](image2)
Ces chaînes de lipides vont donner lieu à des phénomènes d’auto-organisation supra-moléculaires :
par exemple, des couches bi-lipidiques qui vont former les futures membranes cellulaires.

« Pas de membrane, pas de cellules. Pas de cellules, pas de neurones. Pas de neurones, pas de cerveaux. Pas de cerveaux, pas d’humains ! »
Lumière sur les premières membranes cellulaires

« On n’a pas le choix que de supposer qu’à un moment donné au début de l’évolution, une réaction biochimique capable de fabriquer des membranes a pu être catalysée par une molécule non organique, c’est-à-dire n’étant pas issue du métabolisme d’une cellule vivante.

C’est justement ce que viennent de réaliser (janvier 2012) les chimistes Neal Devaraj et Itay Budin en utilisant des ingrédients simples (eau, huile, détergent) et de simples ions de cuivre comme catalyseur pour unir les deux chaînes lipidiques »

http://www.blog-lecerveau.org/blog/2012/02/06/lumiere-sur-les-premieres-membranes-cellulaires/
…cette évolution chimique va donner lieu à des chaînes moléculaires de :

- Glucides
- Lipides
- Bases nucléiques
...cette évolution chimique va donner lieu à des chaînes moléculaires de :

- Glucides
- Lipides
- Bases nucléiques
- Protéines
Rappel :

Les « macro-molécules » qui formeront les organismes vivants sont donc constituées des mêmes atomes que ceux que l’on retrouve dans la matière inanimée.

Les molécules organiques ne vont pas se distinguer par la nature de leurs constituants, mais bien au niveau de leur arrangement, de leur structure, bref leur forme.
Durant l’histoire occidentale de la science et de la philosophie, il y a eu une tension entre 2 perspectives :

- l’étude de la matière : de quoi c’est fait ?
- l’étude de la forme : quel est le pattern ?

Pas que ce n’était pas important avant (par exemple, le repliement des protéines), mais cela va devenir central avec les premières cellules.
Dans ce passage de l’évolution chimique à l’évolution biologique, quand apparaît la vie ?

Les définitions de la vie (on va y revenir…) sont souvent des listes de critères comprenant des éléments comme :

Développement ou croissance
Métabolisme
Motilité
Reproduction
Réponse à des stimuli
Etc.
Dans ce passage de l'évolution chimique à l'évolution biologique,

quand apparaît la vie ?

Non

+ ou – vivants de différentes manières...

Oui

un gradient
Différentes machines permettant de voler, utilisant différents principes, comportant certaines forces et faiblesses en fonction de différents aspects considérés…

De même, il pourrait très bien y avoir différentes façon « d’être vivant », comportant certaines forces et faiblesses en fonction de différents aspects considérés…

Développement ou croissance + ou –
Métabolisme + ou –
Motilité + ou –
Reproduction + ou –
Réponse à des stimuli + ou –
Différentes « signature de vie »

Ni êtres vivants ni cailloux...

Etre vivant
Ce pentagone rose décrit un être vivant, c'est-à-dire un être capable de remplir ces 5 fonctions retenues pour qualifier la vie (même si elles ne suffisent pas, à elles seules, à la définir).

1. **Se reproduire**
2. **Evoluer**
3. **Entretenir un métabolisme interne**
4. **Posséder une membrane qui l'individualise**
5. **Coupler ces 4 capacités**

Chose inerte
Incapable de se reproduire, d'évoluer, de posséder un métabolisme, une membrane ni, a fortiori, de conjuger ces 4 facteurs, un caillou, par exemple, ne remplit aucune partie du pentagone.
Différentes « signature de vie »

Car le biologiste Radu Popa a listé plus de 300 définitions de la vie…
…dont aucune ne fait l'unanimité !

http://planete.gaia.free.fr/sciences/vivant/presque.html
On peut aussi se demander (comme un enfant fatigant!),

pourquoi apparaît la vie?

Le BLOGUE du CERVEAU À TOUS LES NIVEAUX

Lundi, 29 décembre 2014

Des « liens-cadeaux » pour finir l’année 2014

Jeremy England, physicien de 31 ans, pense que les organismes vivants existent parce qu’ils ont simplement tendance à mieux capturer l’énergie de leur environnement et à la dissiper sous forme de chaleur, conformément au deuxième principe de la thermodynamique.
La démonstration mathématique de England montre que :

« quand un groupe d’atomes est entraîné par une source d’énergie externe (comme le soleil ou des carburants chimiques) et entouré par un bain de chaleur (comme l’océan ou l’atmosphère), il se restructure progressivement afin de dissiper de plus en plus d’énergie. Cela pourrait signifier que dans certaines conditions, la matière acquiert inexorablement l’attribut physique associé à la vie. »

Qualifiée de spéculative mais prometteuse par plusieurs de ses collègues, cette idée est en voie d’être mise à l’épreuve empiriquement. Affaire à suivre en 2015, donc…

Pourquoi la vie existe-t-elle ? Ce physicien a développé une théorie qui pourrait bouleverser les fondements actuels

A New Physics Theory of Life
Pour comprendre ce qu’est une cellule vivante,

une notion très utile est celle d’autopoïèse,
élaborée par Humberto Maturana et Francisco Varela
dans les années 1970.
Pour comprendre ce qu’est une cellule vivante,

une notion très utile est celle d’autopoïèse,
élaborée par Humberto Maturana et Francisco Varela dans les années 1970.

« Notre proposition est que les être vivants sont caractérisés par le fait que, littéralement, ils sont continuellement en train de s’auto-produire.

Cette organisation repose sur des relations plus faciles à mettre en évidence au niveau cellulaire. » - Maturana & Varela, L’arbre de la connaissance, p.32

On va utiliser ce concept pour essayer de comprendre ce qu’est une cellule vivante.
« Un système autopoïétique est un réseau complexe d’éléments qui, par leurs interactions et transformations, régénèrent constamment le réseau qui les a produits. »

An image of a human buccal epithelial cell obtained using Differential Interference Contrast (DIC) microscopy (www.canisius.edu/biology/cell_imaging/gallery.asp)
« un réseau »...

= des éléments qui entretiennent des relations

Et dans ce réseau, il y a constance de la structure générale malgré le changement de ses éléments constituants.
« un réseau complexe »... = cascades de réactions biochimiques dans une cellule
« un réseau complexe d’éléments »... : enzymes (protéines), ADN, etc.

..qui régénèrent constamment, par leurs interactions et transformations, le réseau qui les a produits.
Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean

Markus A Keller, Alexandra V Turchyn, Markus Ralser

Published
25.04.2014
http://msb.embopress.org/content/10/4/725

« metabolism could be of prebiotic origin. »
« un réseau complexe d’éléments »... : enzymes (protéines), ADN, etc.

..qui régénèrent constamment, par leurs interactions et transformations, le réseau qui les a produits.

« Pas de métabolisme, pas de cellules. Pas de cellules, pas de neurones. Pas de neurones, pas de cerveaux. Pas de cerveaux, pas d’humains ! »
..qui régénèrent constamment, par leurs interactions et transformations, le réseau qui les a produits.
1. The substrate, sucrose, consists of glucose and fructose bonded together.

2. The substrate binds to the enzyme, forming an enzyme-substrate complex.

3. The binding of the substrate and enzyme places stress on the glucose-fructose bond, and the bond breaks.

4. Products are released, and the enzyme is free to bind other substrates.
Les premières cellules vivante sont déjà **infiniment complexes** !
Toute cellule est donc un **système ouvert** qui :

- a besoin de nutriments
- rejette des déchets
- construit sa propre **frontière** et tous ses **composants internes**, qui vont eux-mêmes engendrer les processus qui produisent tous les composants, etc.

“Life is a factory that makes itself from within. “
Il n’y a pas d’endroit particulier qui pourrait être associé à un “centre de la vie” à l’intérieur de la cellule (pas plus qu’il n’y a de “centre de” quoi que ce soit dans le cerveau…)

Car la vie n’est pas localisée.

C’est une propriété globale qui émerge des interactions collectives du réseau des composants moléculaires qui forment la cellule.

La vie est une propriété émergente qui n’est pas présente dans les parties mais dans le tout que forment ces parties.

“Le tout est plus que la sommes de ses parties.”
Exemple de propriétés émergentes en chimie

Sodium (Na)
(métal hautement inflammable)

+

Chlore (Cl)
(gaz très toxique)

=

Chlorure de sodium (NaCl)
(sel de table, parfaitement comestible)
Et s’il est vrai que la biologie se construit à partir de la chimie, l’émergence du vivant en tant que propriété ne peut pas être réduit aux propriétés de ses constituants chimiques.

L’approche réductioniste en science où l’on cherche à réduire le tout en ses parties n’est applicable que lorsqu’on parle de ce qui compose la structure du vivant.

Et non des propriétés (issues de la forme de ses réseaux).
En biologie, c’est donc la 2e question qui va nous intéresser :

l’étude de la **forme** : quel est le pattern ?

Est-ce qu’il y a un **pattern commun** qu’on peut associer à tous les systèmes vivants?

Je vous donne tout de suite le punch :

« **Whenever we look at life, we look at networks.** ”
«Whenever we look at life, we look at networks.”
Et ça se vérifie déjà au niveau du gène…
On a longtemps pensé que les gènes n’étaient que les « plans » pour fabriquer nos protéines.

Mais on sais maintenant que certains gènes servent à fabriquer des enzymes qui vont revenir se fixer sur d’autres gènes et en influencer l’expression.

Dans l’autopoïèse, le métabolisme et les gènes forment ensemble un réseau.
On a longtemps pensé que les gènes n’étaient que les « plans » pour fabriquer nos protéines.

Mais on sais maintenant que certains gènes servent à fabriquer des enzymes qui vont revenir se fixer sur d’autres gènes et en influencer l’expression.

Dans l’autopoïèse, le métabolisme et les gènes forment ensemble un réseau.

Ces réseaux doivent cependant réussir à se reproduire en faisant des copies d’eux-mêmes.
Car la vie implique aussi une capacité de **mémoire** pour retenir les bons coups du hasard.

C’est ce que fait l’ADN, cette **longue** molécule relativement **stable** située dans le noyaux de chacune de nos cellules.

Mais cette stabilité ne lui confère pas un statut particulier vis-à-vis des autres molécules :

l’ADN fait partie d’un **réseau complexe d’interactions moléculaires**.
Les réseaux complexes se « compartimentalisent »

Dans le noyau, où se retrouve l’ADN.

Mais aussi dans différents compartiments, dont un très important, les mitochondries.
L’origine des mitochondrie :

un phénomène de **symbiose** important
Tout comme l’origine des chloroplastes !
Tout comme l’origine des chloroplastes !
Avec la mitochondrie, la molécule d'oxygène est utilisée comme accepteur final d'électrons et permet une oxydation complète de la molécule de glucose qui sera complètement transformée en CO2 et H2O.

Bilan énergétique : 38 ATP, soit 19 fois plus que la glycolyse !

Avant, avec seulement la glycolyse : le glucose sera transformé en absence d'oxygène, en alcool éthylique qui sert d'accepteur interne pour les électrons.

Bilan énergétique : 2 ATP
« Pas de relation symbiotique cellules eucaryotes - bactéries aérobies (une forme de coopération), pas de neurones si énergivores. Pas de neurones, pas de cerveaux. Pas de cerveaux, pas d’humains ! »
Autre étape importante : apparition de la reproduction sexuée, vraisemblablement avec les premiers eucaryotes.

Car avant : multiplication asexuée qui permet à un « parent » de se multiplier seul en faisant deux copies identiques de lui-même.

La sexualité : deux « parent » se mettent ensemble pour faire un individu toujours différent grâce au brassage du patrimoine génétique (crée beaucoup plus de diversité)
La sexualité : **deux** « parent » se mettent ensemble pour faire un individu toujours **différent** grâce au **brassage** du patrimoine génétique (crée beaucoup plus de **diversité**).
« Pas de sexualité, peu de diversité. Peu de diversité, peu d’évolution biologique.

Peu d’évolution biologique, peu de chance de produire des cerveaux humains ! »
On estime le nombre de gènes codant une protéine chez l'Homme à environ *20 000*, ce qui correspond à 3,2 milliards de paires de nucléotides. Ainsi chaque cellule humaine contient 2 mètres d'ADN environ.

La majorité du génome humain est toutefois composée de séquences ne codant pas pour des gènes. Ces séquences correspondent notamment à des régions régulatrices de l'ADN.
La mouche drosophile a un génome constitué de 13 000 gènes porté sur 4 paires de chromosomes.
On lit souvent qu’on partage 98 % des même gènes que notre plus proche cousin, le chimpanzé.

« Pendant plusieurs années le postulat du 1% nous a bien servi, parce que nous avions tendance à sous-estimer combien nous (humains et chimpanzés) sommes similaires. »

- Pascal Gagneux, l’Université de Californie

Toutefois, en 2006 par exemple, un étude d’une équipe de l’Indiana concluait :

« la duplication et la perte de gènes peut avoir joué un plus grand rôle que la substitution de nucléotides dans l’évolution de phénotypes spécifiquement humains ».

Pascal Lapointe, ASP, (2007)
http://www.sciencepresse.qc.ca/actualite/2007/07/05/humains-chimpanzes-mythe-1
Les **duplications segmentaires** sont des copies multiples de morceaux d'ADN, insérées en divers points du génome. Elles peuvent contenir des gènes entiers dont les copies, en principe identiques, peuvent varier suite à l'apparition de mutations.

Or selon Tomás Marqués-Bonet de l'Institut de biologie évolutive de Barcelone, en considérant les duplications segmentaires, le taux de différences entre l'Homme et le chimpanzé passe de 1,24 % (estimation actuelle) à 10-15 %.

Le scientifique a en effet observé une augmentation très importante des duplications segmentaires lorsque les chimpanzés et les Hommes se sont séparés, il y a 6 millions d’années.

D’autres chercheurs se sont aussi demandés si la différence entre l’humain et les grands singes ne pourrait pas provenir de l’expression des différents gènes les constituants.

En observant les mêmes 1056 gènes présents chez l’Homme, le macaque, l’orang-outan, et le chimpanzé, ils ont pu quantifier l’expression de chacun de ces gènes dans les différents organismes.

Ils ont pu montrer pour 907 de ces gènes que des variations d’expression de 12 % à 19 % sont observés entre les espèces.

En particulier les gènes codant pour des facteurs de transcription semblent être particulièrement actifs dans les cellules humaines.

Car 20 000 gènes pour spécifier l’emplacement de 85 milliards de neurones et de leur 1000 ou 10 000 connexions chacun, c’est pas assez !

Il va donc devoir y avoir des choses qui se passent « après les gènes », durant le développement.

Ces phénomènes **épigénétiques**, qui surviennent donc après la naissance, ont été déjà observés vers 1972 par J-P Changeux et son équipe (rapportés dans l’*Homme neuronal*, 1983), sont sous le contrôle de l’activité du réseau et se font sur le mode "darwinien" de **compétition** et d’**élimination** de synapses.
Le spectre des phénomènes **épigénétiques** s’est beaucoup élargi et on connaît maintenant certains mécanismes moléculaires qui les sous-tendent.
Scientists replicate key evolutionary step in life on earth
Jan 16, 2012
http://phys.org/news/2012-01-scientists-replicate-key-evolutionary-life.html#jCp

"This study is the first to experimentally observe that transition [the switch to living as a group, as multi-celled organisms]"

Pas seulement un groupe de cellules attaché au hasard, mais des cellules (de levure) qui restent attachées ensemble après leur division.
Important car cette similarité génétique amène de la coopération.

Aussi :
- En atteignant une certaine taille, les cellules meurent par apoptose;
- Les cellules-filles se reproduisent seulement quand elles atteignent la taille de leur parent.

"A cluster alone isn't multi-cellular. But when cells in a cluster cooperate, make sacrifices for the common good, and adapt to change, that's an evolutionary transition to multi-cellularity."

Un moteur important de l’évolution :
La sélection naturelle

1- Les individus d’une population *diffèrent* suite à des *mutations* qui surviennent au hasard (*variations*)

2- Plusieurs de ces différences sont *héréditaires*;

3- Certains individus, *dans un environnement donné*, ont des caractéristiques qui les *avantage* en terme de *survie et de reproduction*;

4- Ils vont donc transmettre *plus efficacement à leur descendants ces caractères héréditaires avantageux*, et progressivement toute la population les possédera.
L’évolution n’est pas que la sélection naturelle

Trop de gens pensent encore que la sélection naturelle de Darwin est un mécanisme capable d’expliquer à peu près tous les aspects de l’évolution.

PZ Myers, un spécialiste de la biologie évolutive du développement qui tient l’un des blogues scientifiques les plus fréquentés, montre que la complexité n’est habituellement pas le produit de la sélection naturelle.

Les mutations dues au hasard, couplées à une dérive génétique au sein de la population, explique en grande partie la complexification du vivant.
L’évolution n’est pas que la sélection naturelle

Trop de gens pensent encore que la sélection naturelle de Darwin est un mécanisme capable d’expliquer à peu près tous les aspects de l’évolution.

PZ Myers, un spécialiste de la biologie évolutive du développement qui tient l’un des blogues scientifiques les plus fréquentés, montre que la complexité n’est habituellement pas le produit de la sélection naturelle.

Mur de la complexité minimale

(SJ Gould)
"L'évolution ne tire pas ses nouveautés du néant. Elle travaille sur ce qui existe déjà. […] la sélection naturelle opère à la manière non d'un ingénieur, mais d'un bricoleur ; un bricoleur qui ne sait pas encore ce qu'il va produire, mais récupère tout ce qui lui tombe sous la main […]"

• (François Jacob / né en 1920 / Le jeu des possibles / 1981)
Chez les multicellulaires, on va aussi assister au phénomène de spécialisation cellulaire...
Le nombre de cellules propres à un organisme humain adulte est de l'ordre de 10^{14} (cent mille milliards !)

Les bactéries présentes dans ce même organisme, constituant notre flore microbienne (le microbiote), seraient dix fois plus nombreuses1 (10^{15}) !

Le plus connue des organismes du microbiote est la bactérie *Escherichia coli*, qui vit dans le côlon.

E. coli compose environ 80% de notre flore intestinale et participe au bon fonctionnement du système gastro-intestinal. Elle forme avec 400 autres espèces, un écosystème stable, essentiel au maintien d’une bonne santé.

Si le système immunitaire est affaibli, la plupart de ces bactéries de la flore normale agissent en tant que pathogènes opportunistes.
Ces cellules spécialisées forment différents **tissus** et **organes**, et finalement différents **grands systèmes**...
…dont l’origine est très ancienne !
Hormones !
(système endocrinien)

...mais aussi neurotransmetteurs et récepteur des neurones du **système nerveux** !
2ᵉ principe de la thermodynamique : entropie, désordre...
« La seule raison d’être d’un être vivant, c’est d’être, c’est-à-dire de maintenir sa structure. »

- Henri Laborit
Plantes :

photosynthèse
grâce à l’énergie du soleil
Animaux :

autonomie motrice
pour trouver leurs ressources
dans l’environnement
Systèmes nerveux !
Aplysie
(mollusque marin)
Une boucle sensori-motrice
Question intéressante :
Quel serait l’événement « premier » à partir duquel se construirait toute « sentience » subséquente dans la psychologie animale, du simple réflexe sensori-moteur jusqu’à la conscience humaine ?
Question intéressante :

Quel serait l’événement « premier » à partir duquel se construirait toute « sentience » subséquente dans la psychologie animale, du simple réflexe sensori-moteur jusqu’à la conscience humaine ?

Cette perturbation environnementale première qui alerte en quelque sorte la cellule qu’il se passe « quelque chose » qui la concerne dans l’environnement serait, selon N.D. Cook, G.B. Carvalho et A. Damasio, les **ions positifs**, essentiellement de sodium (Na+) et de calcium (Ca2+) qui entrent massivement dans la cellule…

From membrane excitability to metazoan psychology

http://www.cell.com/trends/neurosciences/abstract/S0166-2236%2814%2900128-3?cc=y

Trends in Neuroscience, December 2014
Pendant des centaines de millions d’années, c’est cette boucle-sensorimotrice qui va se complexifier...
Pendant des centaines de millions d’années, c’est cette boucle-sensorimotrice qui va se complexifier…

…pour en arriver à nous !
Le cerveau humain est encore construit sur cette boucle perception – action,

mais la plus grande partie du cortex humain va essentiellement moduler cette boucle,

comme les inter-neurones de l’aplysie.
A WALK THROUGH HUMAN EVOLUTION

The newest fossils have brought scientists tantalizingly close to the time when humans first walked upright—splitting off from the chimpanzees. Their best guess now is that it happened at least 6 million years ago. Click here to read the cover story >>

LAST COMMON ANCESTOR
It should have a mosaic of features reminiscent of both apes and humans—but that’s true of several species already found, so identification might be tough.

Orrorin tugenensis ("Millennium Man"); possible human ancestor

Ardepithecus ramidus kadabba

A. afarensis (includes Lucy)

A. africanus

A. robustus

A. boisei

H. habilis

H. erectus

H. neanderthalensis

H. sapiens MODERN HUMANS

Chimpanzees

Gorillas

Timeline by Joe Lertola

In Millions of Years (All dates are approximate)
A WALK THROUGH HUMAN EVOLUTION
The newest fossils have brought scientists tantalizingly close to the time when humans first walked upright—splitting off from the chimpanzees. Their best guess now is that it happened at least 6 million years ago. Click here to read the cover story >>

LAST COMMON ANCESTOR
It should have a mosaic of features reminiscent of both apes and humans—but that’s true of several species already found, so identification might be tough.

A. afarensis (includes Lucy)
A. africanus
A. boisei
A. robustus
H. habilis
H. erectus
H. neanderthalensis
H. sapiens MODERN HUMANS
Chimpanzees
Gorillas

Timeline by Joe Lertola

In Millions of Years (All dates are approximate)

Voir aussi :
L’hominisation, ou l’histoire de la lignée humaine.
http://lecerveau.mcgill.ca/flash/capsules/histoire_bleu03.html
A WALK THROUGH HUMAN EVOLUTION

The newest fossils have brought scientists tantalizingly close to the time when humans first walked upright—splitting off from the chimpanzees. Their best guess now is that it happened at least 6 million years ago. [Click here to read the cover story >>]

LAST COMMON ANCESTOR
It should have a mosaic of features reminiscent of both apes and humans—but that's true of several species already found, so identification might be tough.

Orrorin tugenensis ("Millennium Man"; possible human ancestor)

Ardepithecus ramius kadabba

In Millions of Years (All dates are approximate)

1,000,000
500,000
100,000
0

Global Climate (Temperatures EPICA)

Homo antecessor

Homo rhodesiensis

Homo neanderthalensis

Homo sapiens

H. habilis

H. erectus

H. sapiens MODERN HUMANS

H. neanderthalensis

H. sapiens

Chimpanzees

Gorillas

Timeline by Joe Lertola
Les révélations du génome néandertalien

Il semble par exemple maintenant à peu près certain, suite aux résultats obtenus en décembre 2013, que certains de nos ancêtres Homo sapiens se sont reproduits avec des néandertaliens, une question qui demeurait débattue jusqu’alors.

La présence de 1,5 à 2,1% de gènes de néandertaliens dans notre génome témoignant de cette reproduction croisée.
Mais rien de comparable aux transformations cognitives chez les hominidés durant à peine plus longtemps (3 millions d’années) :

- langage, outils, structure sociale complexe, etc.

Évolution divergente chimpanzés / bonobos il y a 1-2 millions d’année a donné :

- organisation sociale différente (bonobos: matriarcale; chimpanzé: dominée par mâle alpha)
- utilisation d’outils présente chez l’un (chimpanzé) mais pas chez l’autre.
L’expansion cérébrale qui nous sépare des grands singes peut être une part de l’explication derrière ces changements cognitifs spectaculaires.
En moins de 4 millions d’années, un temps relativement court à l’échelle de l’évolution, le cerveau des hominidés va donc tripler de volume par rapport à celui qu’il avait acquis en 60 millions d’années d’évolution des primates.

A WALK THROUGH HUMAN EVOLUTION
The newest fossils have brought scientists tantalizingly close to the time when humans first walked upright—splitting off from the chimpanzees. Their best guess now is that it happened at least 8 million years ago. Click here to read the cover story >>

New evolutionary tree for primates

| Millions of Years Ago | Late Cretaceous | Paleocene | 65 55 |

Extinction of dinosaurs

Earliest common ancestor

Earliest fossil primates

Early monkeys

Present

Graphs showing changes in climate and changes in braincase volume.
Plusieurs hypothèses pouvant avoir agi de concert sont encore débattues pour expliquer l’origine de cette expansion cérébrale spectaculaire :

la **fabrication d’outils** (car elle nécessite précision motrice, mémoire et planification);

la **chasse** (suivre et prédire le parcours du gibier est facilité par la mémoire fournie par un gros cerveau);

les **règles sociales complexes** (un plus gros cerveau aide à assimiler des conduites sociales complexes);

le **langage** (plusieurs pensent qu’il s’agit d’une adaptation survenue très tôt chez les hominidés).
Comment un plus gros cerveau pourrait-il permettre le développement de fonctions cognitives complexes ?

1) par le nombre de neurones accru et la combinaison de connexions qui vient avec;

- 20 000
- 1 000 000
- 1 000 000 000
- 7 000 000 000
- 23 000 000 000
- 85 000 000 000
2) Par la croissance relative de différentes structure cérébrale

Pour le cervelet, impliqué dans la coordination des mouvements musculaires, son poids par rapport au reste du cerveau est remarquablement constant chez tous les mammifères.

À l’opposé, celui du néocortex varie grandement selon les espèces. Les poissons et les amphibiens en sont complètement dépourvus, tandis que le néocortex représente 20 % du poids du cerveau d’une musaraigne et… 80 % de celui de l’humain !
Développement du cortex dans le cerveau humain
C’est durant la transition des primates à l’humain que le néocortex s’est le plus développé.

Les couleurs représentent ici la valeur de l’augmentation de surface nécessaire pour que chaque région soit transposée du cerveau de macaque et du cerveau de chimpanzé au cerveau humain.

(dont notre ancêtre commun avec le premier auraient vécu il y a environ 25 millions d’années et 5-7 millions d’années pour le second).
En résumé, l’expansion rapide du cortex chez l’humain a fait émerger de large portions de **cortex dit « associatif »** plus ou moins détachées des cortex sensoriels.
En résumé, l’expansion rapide du cortex chez l’humain a fait émerger de large portions de cortex dit « associatif » plus ou moins détachées des cortex sensoriels.

Ce vaste cortex humain est donc largement constitué de :

- réseaux associatifs interconnectées et distribués
- qui se mettent en place tardivement durant le développement
En résumé, l’expansion rapide du cortex chez l’humain a fait émerger de large portions de **cortex dit « associatif »** plus ou moins détachées des cortex sensoriels.

Ce vaste cortex humain est donc largement constitué de :

- réseaux **associatifs** interconnectées et distribuées

- qui se mettent en place **tardivement** durant le développement

- et qui sont grandement **dépendants d’influences extérieures** grâce à leur **important plasticité** découlant de cette maturation lente et prolongée.
TALKING THE TALK
Macaques diverged from human ancestors 30 million years ago, and their brains have simple language regions. Chimps split off 7 million years ago and have better speech centers.

TOP OF THE LINE
Nothing drives complex societies like language, and the key to human prolixity is the arcuate fasciculus, which weaves together the various brain regions that govern speech.
« Les mots [...] sont des indices pour coordonner des actions par le langage. » (L’arbre de la connaissance, p.228)

« Ce qui est pertinent est la coordination d’actions [que les langues] provoquent et non la forme qu’elles adoptent. » (p.203) (table, mesa, etc.)
Jusqu'à il y a 8000 – 10 000 ans, on était dans :

Et ensuite, jusqu'à l'invention de l'écriture, on est dans :

Le paléolithique
de 3 millions d'années à 8000 ans avant J.-C.

- Un racloir en pierre
- Un biface
- Un harpon en os
- Un poignard en pierre

Le néolithique
de 8000 avant J.-C. à 3000 avant J.-C.

- Une meule
- Un récipient en poterie
- Une faucille à lame de pierre
Co-évolution gène-culture

Exemple classique : la pratique culturellement transmise de l’élevage qui a favorisé la transmission d’allèles de gènes pour la tolérance au lactose dans certaines populations humaines.

Des centaines de gènes humains évoluent probablement encore en réponse à une pression sélective venant de pratiques culturelles...
VERS UN JALON (PRÉ)HISTORIQUE

1750 280 PPM
Début de l'ère industrielle avec l'emploi du charbon. Train, navires et machines seront les premiers grands émetteurs de gaz à effet de serre (GES) de source fossile.

1859 290 PPM
Le puits de pétrole d'Irwin Drake en Pennsylvanie est le point de départ de l'industrie pétrolière. La même année, le physicien britannique John Tyndall est le premier à mesurer la capacité de différents gaz.
Une pénurie d'eau guette le monde si les habitudes de consommation n'évoluent pas

Publication 20 mars 2015

Le monde pourrait devoir composer avec une pénurie d'eau de l'ordre de 40 % d'ici à peine 15 ans si les États ne révisent pas profondément leur façon d'utiliser la ressource, selon un rapport de l'Organisation des Nations unies (ONU) dévoilé vendredi.

Le niveau de plusieurs nappes phréatiques est déjà inquiétant et les modèles relatifs aux précipitations pourraient devenir plus erratiques en raison des changements climatiques.

http://quebec.huffingtonpost.ca/2015/03/20/penurie-eau-monde_n_6910294.html
Bref, ça va nous prendre des modèles pour essayer de comprendre ce qui est de toute évidence le « summum » de l’intelligence…

Et c’est ce que nous allons voir après la pause…